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Abstract Quantitative structure–property relationships
were studied between descriptors representing the
molecular structures and thermal decomposition tem-
peratures (Td) for a diverse set of 90 second-order
nonlinear optical (NLO) chromophores. A seven-
parameter model was developed for the prediction of
molar thermal decomposition function Yd (Td M, where
M represents the molar weight) with R2 =0.9642 and
SEE=14.01 by multilinear regression analysis. The
mean relative error for the prediction of Td was 4.46%.
The stability of the proposed model was validated using
leave-one-out cross-validation. All descriptors involved
in the model were derived solely from the chemical
structures of the NLO chromophores.

Keywords QSPR Æ Thermal stabilities Æ NLO
chromophores Æ Molecular descriptors Æ Multilinear
regression analysis

Abbreviations QSPR: Quantitative structure–property
relationships Æ NLO: Nonlinear optical Æ SEE:
Standard error of estimation Æ LOO: Leave-one-out Æ
MLRA: Multilinear regression analysis

Introduction

The increasing importance of telecommunications has
caused a pressing need to develop photonic components,
which are actually fabricated from semiconductors. The
performances of semiconductor devices are not optimal

and the interest in organic second-order nonlinear
optical (NLO) materials is growing because of their
larger susceptibilities, faster response time, ease of pro-
cessing, and versatility of molecular structural modifi-
cations. In particular, poled polymeric materials will
play an important role in selected applications, i.e., high-
performance electro-optic (EO) modulation, optical
information processing, computing, and data storage [1–
3]. These materials are typically made from small or-
ganic molecules, namely chromophores, incorporated
into polymer matrices and poled with an electric or
optical field to realize a non-centrosymmetric dipole
alignment.

To obtain device-quality materials, the NLO chro-
mophores should meet the following fundamental
requirements: (1) large microscopic second-order NLO
effect (high molecular nonlinearity—lb, where l is the
dipole moment and b is the hyperpolarizability); (2)
good solubility of the chromophore in polymer matrices
to avoid phase separation and formation of concentra-
tion gradients; (3) good thermal stability, usually with
the thermal decomposition temperature Td over 573 K
to ensure that the chromophores are sufficiently ther-
mally robust to survive the high temperatures (523–
573 K) during the fabrication steps for those devices; (4)
low cut-off wavelength and so on [4–7]. Optimization of
any individual above-mentioned property is not difficult.
However, simultaneous realization of all requirements to
achieve device-quality materials is not a trivial task [6].
Due to the existing trade-offs between these properties,
optimization of one very often causes the attenuation of
others. For example, additional thermal stability can be
added to a NLO chromophore by the substitution of
aromatic moieties for aliphatic ones along the delocal-
ized path between an electron donor and an acceptor.
However, since the molecular nonlinearity is a measure
of the ease of excitation to a state in which substantial
intramolecular charge transfer has taken place, addi-
tional aromatic rings disfavor that charge transfer and
the molecular nonlinearity is reduced [8]. Therefore, the
design and synthesis of optimized chromophores have
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become a key goal in this area of research [8–12]. In
addition, methods for predicting the above-mentioned
properties of chromophores from their molecular
structures quantitatively would be undoubtedly of sig-
nificant utility in the search for device-quality chromo-
phores and materials.

Alternatively, quantitative structure–property rela-
tionships (QSPR) provide a promising method for the
estimation of the properties of chromophores based on
descriptors derived solely from the molecular structure to
fit experimental data. The QSPR approach is based on
the assumption that the variation of the behavior of the
compounds, as expressed by any measured properties,
can be correlated with changes in the molecular features
of the compounds termed descriptors. The advantage of
this approach lies in the fact that it requires only
knowledge of the chemical structure and is not dependent
on any experimental properties. QSPR has been applied
successfully to the correlation of many diverse physico-
chemical properties of chemical compounds. Remark-
ably, Oberg et al. [13] developed a successful QSPR
model for the prediction of the nonlinearities of 22
chromophores, with 5 quantum-chemical descriptors
involved. More recently, Zeng et al. [14] obtained a
three-parameter correlation to predict the nonlinearities
for 32 para-disubstituted benzenes. However, there have
been relatively few attempts to predict Td of compounds.
The only previously published QSPR relationship for the
prediction of Td was developed by Bicerano [15] for a set
of 140 polymers, with 21 descriptors involved, using the
molar thermal decomposition function Yd (defined as Td

multiplied by the molecular weight M) as the dependent
variable (R2 =0.998).

The goal of the present study is (1) to develop a ro-
bust QSPR model that could predict Td values for a
diverse set of chromophores, (2) to discover the main
structural factors that affect the Td of chromophores
significantly. The molecular structures of 90 chromo-
phores were preoptimized and 444 descriptors were
calculated for each molecule using the Dragon software
[16]. Through stepwise multilinear regression analysis
(MLRA) [17] with leave-one-out (LOO) cross-valida-
tion, a seven-parameter correlation was produced for
Yd, to allow the estimation of this quantity, and hence
also of the Td values of chromophores.

Materials and methods

Database construction

The molecular structures of the 90 NLO chromophore
molecules with extensive structural diversity are shown in
Fig. 1. The experimental Td values were taken from
several publications [7, 9–12, 18–29]. To select significant
descriptors for the QSPR model that captures all the
underlying interaction mechanisms, it is advisable to
have as many structural features as possible represented
in the data set. The working data set included traditional

D-p-A, octupolar, L -shaped, Y-shaped, X-shaped, 2D
charge-transfer chromophores, etc. Also, the compounds
chosen contained various functionalities, such as alde-
hyde, amino, azo, cyano, ether, ethynyl, furan, nitro,
phenyl, pyrrole, thiazole, thiophene, and so on. The
structures included C, H, N, O, S, P, and F atoms. The
molecular weights of these compounds ranged from
266.29 to 744.47 amu. The reported Td values ranged
from 473 to 685 K (see Table 1). Since Bicerano [15]
obtained successful results in the prediction of Td of
polymers by using Yd as the dependent variable because
Td is itself an intensive property, while Yd is an extensive
property, this approach was introduced.

Structure entry and descriptor generation

The structures of the molecules were sketched on a PC
using the ChemDraw Ultra 7.0 program in ChemOffice
2002 [30]. The three-dimensional (3D) geometries were
further preoptimized with the semiempirical AM1
method in the Chem3D program to ensure that low-
energy conformations were obtained for each structure.
The resulting geometry of each structure was transferred
into the software Dragon [16] to calculate 444 empirical
descriptors. The molecular descriptors thus generated
include topological descriptors, molecular walk counts,
connectivity indices, information indices, 2D autocor-
relations, edge-adjacency indices, topological charge
indices, and eigenvalue-based indices. Most of these
descriptors are reviewed in the recent textbook by
Todeschini and Consonni [31].

Objective feature selection

Objective feature selection was used to select a working
subset of descriptors that are independent of each other.
Descriptors that could not be calculated for every
structure in the data set or those that contain identical
information for over 90% of the molecules were re-
moved. Pairwise correlation analysis of the remaining
descriptors using SPSS 11.0 for Windows [32] was per-
formed to remove descriptors that are highly correlated
with other descriptors. For all pairs of the remaining
descriptors, the correlation coefficient was determined. If
for two descriptors the correlation coefficient was higher
than 0.90, regressions were built using descriptor subsets
containing only one of these highly correlated descrip-
tors. The descriptor with lower t value was removed. In
this step, 313 descriptors were removed, resulting in the
working subset with 131 descriptors.

Model development and validation

To develop QSPR models, stepwise MLRA [17] was
applied to the data set. Stepwise MLRA produces a
multiple-term linear equation. However, not all inde-

66



N

S

S

S
R

DBDTTC:R=CHO

DBDTTDC:R= CN

CN
DBDTTDET:R= N

N

S

O

O

SN S

N

N

O

O

S

DTDPD

NO2N

R2

R1

DMNPA:R1=Me,R2=Me
DPNPA:R1=Ph,R2=Ph

NO2N

R2

R1

DANS:R1=Me,R2=Me
DPANS:R1=Me,R2=Me

NO2NN N

R2

R1

DMNPAPA:R1=Me,R2=Me
DENPAPA:R1=Et,R2=Et
DPNPAPA:R1=Ph,R2=Ph NO2

N

N

R1

R2

S

N

ENTPAH:R1=Et,R2=HO(CH2)6

NTPDA:R1=Ph,R2=Ph

NO2

N N

N

R1

R2

S

N

ENBTPAH:R1=Et,R2=HO(CH2)6

NBTPDA:R1=Ph,R2=Ph

N

O

O

R1

R2

DEBID:R1=Et,R2=Et
p-DTBID:R1=4-MeC6H4,R2=4-MeC6H4

N

O

O

R1

R2

DEPAID:R1=Et,R2=Et
p-DTPAID:R1=4-MeC6H4,R2=4-MeC6H4

CN

CN

N

p-DTABM

N

R2

R1

N

N

O

O X

R3

R3

DEBDMPT:R1=Et,R2=Et,R3=Me,X=O
p-DTBDMPT:R1=4-MeC6H4,R2=4-MeC6H4,R3=Me,X=O
DMBDETPD:R1=Me,R2=Me,R3=Et,X=S
DEBDETPD:R1=Et,R2=Et,R3=Et,X=S
p-DTBDETPD:R1=4-MeC6H4,R2=4-MeC6H4,R3=Et,X=S
DEBDPTPD:R1=Et,R2=Et,R3=Ph,X=S
p-DTBDPTPD:R1=4-MeC6H4,R2=4-MeC6H4,R3=Ph,X=S

N

R2

R1

N

N

O

O X

R3

R3

DEPADPPT:R1=Et,R2=Et,R3=Ph,X=O
p-DTPADPPT:R1=4-MeC6H4,R2=4-MeC6H4,R3=Ph,X=O
DEPADPTPD:R1=Et,R2=Et,R3=Ph,X=S
p-DTPADPTPD:R1=4-MeC6H4,R2=4-MeC6H4,R3=Ph,X=S

N

Fig. 1 The chromophores’ structures included in the data set
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pendent variables are used. Step-by-step variables are
added to the equation, and a new regression is per-
formed. If the new variable contributes significantly to
the regression equation, the variable is retained; other-
wise, the variable is excluded, hence preventing overfit-
ting. F-to-enter and F-to-remove were 4 and 3,
respectively. The QSPR regression equation was tested
by the coefficient regression (R2), the adjusted R2, the F
ratio values, the standard error of estimates (SEE), and p
values all corresponding to a 95% confidence level. The
adjusted R2 value was calculated using the following
formula:

R2
adj ¼ 1� n� 1

n� m� 1

� �
1�

Pn
i Y calc

d;i � Y d

� �2
Pn

i Y exp
d;i � Y d

� �2
0
B@

1
CA

2
64

3
75;

ð1Þ

where n is the number of objects and m the number of
descriptors involved in the correlation while,

R2 ¼
Pn

i Y calc
d;i � Y d

� �2
Pn

i Y exp
d;i � Y d

� �2 : ð2Þ

The adjusted R2 is a better measure of the proportion
of variance in the data explained by the correlation than
R2 (especially for correlations developed using small
data sets) because R2 is somewhat sensitive to changes in
n and m. In particular, in small samples, if m is large
relative to n, there is a tendency for R2 to be artificially
high, i.e., for the correlation to fit the data very well. In
the extreme case if n = (m+1) the correlation will fit the
data exactly, i.e., R2 =1 [33]. The adjusted R2 corrects
for the artificiality introduced when m approaches n
through the use of a penalty function which scales the
result.

The predictive ability of the selected equations was
measured through the percentage of mean relative error,
defined as:

MRE ¼ 100

n

X
i

T exp
d;i � T calc

d;i

T exp
d;i

�����
�����: ð3Þ

The stability of the final QSPR model was further
validated internally using LOO cross-validation. To do
this, one compound of the data set was removed, and the
model was recalculated using the remaining n-1 com-
pounds as a training set. The property was then pre-
dicted for the excluded element. This process was
repeated for all the compounds of the data set, obtaining
a prediction for every one. From the residual values
obtained, the standard error of estimates for the cross-
validation SEE(CV) was determined.

Randomization experiments were also performed to
prove the possible existence of fortuitous correlations.
To do this, the dependent variable was randomly
scrambled and used in the experiment. Models were then
investigated with the aforementioned descriptors to find
the most predictive models. The SEEs and correlation
coefficients found using random dependent variables
should be very poor if the original model did accurately
represent the relationship between chemical structure
and the Yd.

Results and discussion

The number of descriptors in the final QSPR model was
determined on the basis of the data set size (90 chro-
mophores) and on the basis of the correlation coefficient
obtained, F ratio values, and adjusted correlation coef-
ficient. In this way, the best seven-parameter correlation
obtained for the entire data set of 90 chromophores had
a squared correlation coefficient R2 =0.9642 and an
adjusted correlation coefficient R2

adj=0.9611, as shown
in detail in Table1 and Fig. 2. The MLRA representa-
tion of the Yd is the following:

Yd ¼ 0:869VRD1� 40:688GATS4vþ 55:969MATS6m
þ 6:222X5sol� 39:544EEig06rþ 2137:1JGI7
� 1340:1JGI8þ 157:722

ð4Þ

Here VRD1 is the Randic-type eigenvector-based index
from the distance matrix (D) [34]; GATS4v is the Geary
autocorrelation –lag 4/weighted by atomic van der
Waals volumes [31]; MATS6m is the Moran

CN

CNNC

R

R

R

TDMVBTC:R=NMe2

TPVBTC:R=piperidyl
TMPVBTC:R=4-MeOC6H4

S

R

N

OO

BPVTa-d

CN

NC

NC

R=

a

NC

NC
b

N

N

O

O

S

c

CN
NC

CN

O

d

O2N

P

N

N
N

TPP-NO2-Azo

Fig. 1 (Contd.)

70



autocorrelation –lag 6/weighted by atomic masses [31];
X5sol is the solvation connectivity index chi-5 [35];
EEig06r is the eigenvalue 06 from the edge-adjacency
matrix weighted by resonance integrals [36–40]; and
JGI7 and JGI8 are the mean topological charge indices
of orders 7 and 8, respectively [41].All the descriptors in
the equation are highly significant as Table 2 shows the
values of p and the standard errors for each descriptor in
the equation. The value of R2 =0.9642 indicates the
quality of the selected model. The SEE results during
stepwise MLRA were shown in Fig. 3, which indicate
that equations with fewer descriptors showed poorer
SEEs. For example, the simplest equation with R2 >0.9
contained only one descriptor (VRD1). This equation
showed R2 =0.9210, but SEE=20.08, i.e., a standard
error of the estimates 43% greater than the one obtained
with the best seven-parameter equation. Models con-
taining more than seven descriptors did not show sig-
nificantly better results than the seven-descriptor
model.To test the dependency of the Yd on each
descriptor, R2, R2

adj and SEE were calculated with one-
descriptor linear regression for the whole set of 90
chromophores (see Table 3). The first important
descriptor is VRD1, which gave the best overall fit with
an R2 value of 0.9210 for the whole 90 data set. This
descriptor encodes information about the size and the
intramolecular ordering of the molecule. The positive
sign of the VRD1 indicates that the bigger the size and
the higher the ordering of the NLO chromophores, the
better the thermal stability.The second important
descriptor is the solvation connectivity index chi-5
(X5sol), which could be considered as entropy of sol-
vation and somehow indicates the dispersion interac-
tions occurring in the melt phase. The contributions of
this descriptor in the thermal stability are in agreement
with the contributions that one would expect for the
interactions of the chromophores. X5sol is also a mea-
sure of branching of the molecules. Thus the presence of

X5sol in the equation also indicates that the thermal
stability depends on the degree of branching and com-
pactness of the chromophore molecules. The index in-
creases with increased chain branching. The coefficient
for the X5sol descriptor is positive, meaning that as
branching increases, the Td increases.The presence of the
descriptor EEig06r in the equation illustrates the influ-
ence of aromatic functionalities and their resonances on
thermal stability. This descriptor decreases with in-
creased resonances. The negative sign of EEig06r indi-
cates that the resonance structures would enhance the Td

of the chromophores. The importance of the transfers of
intramolecular charge on the thermal stability is
apparent from the presence of JGI7 and JGI8 in the
equation.Leave-one-out cross-validation was used to
test the stability of the model obtained and the results
are shown in Table 1 (columns 5 and 8) and Fig. 4. The
discrepancies between both relative errors (RE) are
small for most of the chromophores studied. This indi-
cates that the model is reliable for the prediction of the
Td of NLO chromophores. The mean errors obtained by
Eq. 4 and for the cross-validation were 25.2 and 27.6 K.
The MREs were 4.46 and 4.89%, respectively. These
values are acceptable if the uncertainty that accompanies
the experimental determination of Td for each case is
taken into consideration. Usually the Td values for
chromophores are measured by thermogravimetric
analysis (TGA) or differential scanning calorimetry
(DSC). However, the discrepancies between reported
results in the literature can be quite large. Take TPP-
NO2 for example [27], the Td values determined by TGA
or DSC are 555 or 600 K, respectively. In addition, the
Td values obtained are strongly affected by the heating
rate and other conditions in the TGA or DSC mea-
surement.The same model size and algorithm that pro-
duced the best model for the standard experiment were
tested with randomized dependent variables. The most
predictive model with SEE of 64.12 (R2 =0.250, R2

adj=0.186) was obtained with random dependent vari-
ables. The SEE and R2 values indicate that a poor cor-
relation was found between structure and Yd, which
proves the validity of the real model.From Bicerano’s
model to predict Td of polymers [15], the two most sig-
nificant descriptors, the number of non-hydrogen atoms
and the first-order valence connectivity index 1 vv of the
repeat unit encode information about the size and
branching of the repeat unit, which are expressed by the
VRD1 and X5sol in our model. Sometimes the glass
transition temperature Tg is also used as a measure of
the thermal stability [42, 43] because there are many
similarities between the trends observed for Tg and for
Td [15]. Kim et al. [42] obtained a seven-parameter
QSPR model with R2 =0.989 for Tgs of small molecules
by genetic algorithm (GA) and multilinear regression.
The most significant factor, the number of bonds in a
molecule (SC-1), is related to the size of the molecule,
which is coded by VRD1. More recently, Yin et al. [43]
studied the thermal stabilities of organic light emitting
diode (OLED) materials using Tg as the dependent
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Table 1 Prediction of the molar thermal decomposition function Yd (Kkgmol�1) and the decomposition temperature Td (K) of 90 NLO
chromophores

Chromophore M Yd (exp) Yd (cal)a Yd (CV)b Td (exp) Td (cal)c Td (CV)d

DBDTTC[11] 453.68 281.80 264.68 262.62 621 583.4 578.9
DBDTTDC[11] 501.73 309.64 295.89 294.35 617 589.7 586.7
DBDTTDET[11] 635.93 333.96 352.30 356.10 525 554.0 560.0
DTDPD[19] 569.76 289.52 298.91 299.47 508 524.6 525.7
DMNPA[9] 266.29 149.96 136.71 135.15 563 513.4 507.6
DPNPA[9] 390.43 237.83 235.99 235.82 609 604.4 604.0
DANS[9] 268.31 151.10 136.71 134.90 563 509.6 502.8
DPANS[9] 392.45 247.69 235.99 235.51 631 601.4 600.1
DMNPAPA[9] 270.29 156.81 156.99 157.02 580 580.9 581.0
DENPAPA[9] 298.34 177.56 179.72 180.02 595 602.5 603.4
DPNPAPA[9] 394.43 262.75 252.29 251.27 666 639.7 637.1
ENTPAH[9] 377.46 183.50 198.62 199.16 486 526.2 527.7
NTPDA[9] 401.44 228.08 244.26 245.20 568 608.5 610.8
ENBTPAH[9] 427.52 227.50 220.52 220.14 532 515.9 515.0
NBTPDA[9] 451.50 284.06 271.21 270.40 629 600.7 598.9
DEBID[9] 305.37 170.75 158.53 157.70 559 519.2 516.5
p-DTBID[9] 429.51 287.41 264.19 263.37 669 615.1 613.2
DEPAID[9] 331.41 180.01 188.59 188.95 543 569.1 570.2
p-DTPAID[9] 455.55 273.85 284.52 285.16 601 624.6 626.0
p-DTABM[9] 349.43 228.23 227.82 227.77 653 652.0 651.9
DEBDMPT[9] 315.37 157.42 180.47 183.73 499 572.3 582.6
p-DTBDMPT[9] 439.51 282.67 278.07 277.46 643 632.7 631.3
DMBDETPD[9] 331.43 161.79 176.07 177.37 488 531.3 535.2
DEBDETPD[9] 359.49 176.56 183.33 183.50 491 510.0 510.5
p-DTBDETPD[9] 483.62 302.34 271.15 269.45 625 560.7 557.2
DEBDPTPD[9] 455.17 244.04 247.65 247.72 536 544.1 544.3
p-DTBDPTPD[9] 579.71 349.65 356.76 357.44 603 615.5 616.6
DEPADPPT[9] 463.57 250.86 243.67 242.90 541 525.7 524.0
p-DTPADPPT[9] 587.71 337.43 361.08 363.09 574 614.4 617.9
DEPADPTPD[9] 479.63 257.15 245.16 243.80 536 511.2 508.4
p-DTPADPTPD[9] 603.77 365.98 357.44 356.01 606 592.1 589.7
BNENHAa[21] 326.42 179.58 171.36 170.61 550 525.0 522.7
BNENHAb[21] 382.52 212.36 203.40 202.88 555 531.8 530.4
BNENHAc[21] 394.41 202.00 199.99 199.76 512 507.1 506.5
BNENHAd[21] 544.44 283.19 266.54 264.20 520 489.6 485.3
BNENHAe[21] 744.47 382.02 371.83 367.60 513 499.5 493.8
DR1[21] 314.34 179.85 178.24 178.04 572 567.1 566.5
DETZVTPAa[20] 365.08 178.94 185.16 185.43 490 507.2 508.0
DETZVTPAb[20] 340.47 173.69 176.98 177.39 510 519.8 521.1
DETPVTZAa[20] 365.48 188.28 189.47 189.49 515 518.5 518.5
DETPVTZAb[20] 340.47 184.25 177.16 176.28 541 520.4 517.8
DECVTB[20] 346.45 179.51 186.63 186.85 518 538.7 539.4
DCM[10] 303.36 183.58 201.82 203.87 605 665.3 672.1
DADIH[10] 594.79 395.62 403.22 405.36 665 678.0 681.6
DADB[10] 602.85 374.46 369.61 368.97 621 613.2 612.1
DADTB[10] 614.91 352.44 343.01 342.15 573 557.9 556.5
BNBBA[23] 634.64 412.61 408.88 408.06 650 644.3 643.0
BNPTA[25] 342.33 200.66 184.00 181.35 586 537.6 529.8
DMNPTPTA[25] 460.38 236.24 237.99 238.13 513 517.0 517.3
BNPIPA[25] 401.37 222.82 213.03 211.49 555 530.8 527.0
BNPIP[25] 402.36 193.60 218.57 221.95 481 543.3 551.7
CDVTBE[22] 358.46 187.53 187.38 187.38 523 522.8 522.8
CPiVTBE[22] 362.47 189.63 183.08 182.67 523 505.1 504.0
ABBIPT[22] 542.63 343.57 339.08 337.62 633 624.9 622.2
BDTMM[22] 536.75 336.62 326.64 326.63 627 608.6 608.6
CDTTBE[22] 371.52 216.65 216.73 216.74 583 583.4 583.4
CPyVTBE[18] 376.50 178.14 190.90 191.38 473 507.1 508.4
CDPVTBE[18] 460.57 247.86 247.08 246.98 538 536.5 536.3
DMPNPPD[28] 319.36 183.68 181.21 180.96 575 567.5 566.7
DPPNPA[28] 417.46 274.75 251.10 250.44 658 601.5 600.0
ECNPA[28] 367.40 227.84 226.88 226.74 620 617.6 617.2
ECNTD[7] 351.38 208.42 202.98 202.43 593 577.7 576.1
HENTPAE[7] 337.35 175.14 186.12 187.36 519 551.7 555.4
CECBE[7] 296.33 197.70 194.02 193.49 667 654.8 653.0
ECNPD[7] 344.37 220.45 213.50 212.61 640 620.0 617.4
CECAE[7] 318.37 195.21 207.02 208.27 613 650.3 654.2

72



Table 1 (Contd.)

Chromophore M Yd (exp) Yd (cal)a Yd (CV)b Td (exp) Td (cal)c Td (CV)d

EAPBa[26] 345.40 180.87 186.74 186.87 524 540.7 541.1
EAPBb[26] 425.48 212.80 228.53 229.15 500 537.2 538.6
EAPTa[26] 351.43 177.52 174.33 174.13 505 496.1 495.5
EAPTb[26] 431.51 211.07 221.06 221.56 489 512.3 513.5
EAPTc[26] 479.55 239.85 263.25 263.98 500 549.0 550.5
EAPTd[26] 467.56 225.43 239.66 240.57 482 512.6 514.6
TFA-NO2-Stil[24] 614.49 364.48 357.95 356.75 593 582.6 580.6
BOC-NO2-Stil[24] 622.71 310.20 354.40 360.86 498 569.2 579.5
DA-NO2-Stil[24] 422.48 248.48 256.08 256.51 588 606.2 607.2
TFA-NBT-Stil[24] 671.57 426.55 407.52 405.02 635 606.8 603.1
DA-NBT-Stil[24] 479.55 287.80 296.33 296.70 600 618.0 618.8
NBT-Stil[24] 449.52 287.76 277.51 276.84 640 617.4 615.9
DCVPh-Azo[24] 501.58 343.66 326.49 325.73 685 651.0 649.5
DCV-Azo[24] 425.48 279.18 268.30 267.71 656 630.6 629.2
TCV-Azo[24] 450.49 287.03 274.43 274.03 637 609.2 608.3
TDMVBTC[12] 360.46 221.02 212.07 210.18 613 588.4 583.1
TPVBTC[12] 480.65 284.62 304.11 308.68 592 632.8 642.3
TMPVBTC[12] 549.62 361.73 349.09 347.87 658 635.2 633.0
BPVTa[29] 514.60 292.37 315.36 316.31 568 612.9 614.7
BPVTb[29] 489.59 274.73 301.23 303.73 561 615.3 620.4
BPVTc[29] 623.78 393.70 374.73 373.17 631 600.8 598.3
BPVTd[29] 622.73 389.30 396.587 397.17 625 636.9 637.8
TPP-NO2[27] 398.39 239.09 252.657 254.55 600 634.2 639.0
TPP-NO2-Azo[27] 502.50 305.60 316.17 317.06 608 629.2 631.0

a Predicted using Eq. 4 (see text)
b Calculated from LOO cross-validation

c Calculated by Td (cal) = Yd (cal)/M
d Calculated by Td (cal) = Yd (cal)/M

Table 2 Descriptors involved in the best seven-parameter correlation derived for Yd

Descriptor Descriptor type X DX t test p level

Constant 157.722 20.009 7.882 0.000000
VRD1 Eigenvalue-based 0.869 0.049 17.736 0.000000
GATS4v 2-D autocorrelations �40.688 7.897 �5.153 0.000002
MATS6m 2-D autocorrelations 55.969 8.621 6.492 0.000000
X5sol Connectivity 6.222 1.237 5.031 0.000003
EEig06r Edge-adjacency �39.544 8.485 �4.660 0.000012
JGI7 Topological charge 2137.1 614.00 3.481 0.000804
JGI8 Topological charge �1340.1 465.82 �2.877 0.005119

n=90, R2 =0.9642, R2
adj=0.9611, F=315.25, SEE=14.01, SEE(CV)=14.89, p<0.00000
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variable by means of QSPR. Using the CODESSA
(comprehensive descriptors for structural and statistical
analysis) package, they produced a six-parameter cor-
relation with a mean error of 8.5 K for 73 OLED
materials. The relative number of rings (RNR) and the
principal moment of the inertia IB in their model have
similar physical meanings as EEig06r and VRD1. The
similarities mentioned above indicate that the main
structural factors affecting the thermal stability have
been expressed by our model.

Conclusions

In this paper, a general seven-parameter QSPR model
was reported to predict the Td values for a diverse set
of chromophores. The descriptors involved in the
model relate rationally to the physical origin, because
Td is found to be determined by the following struc-
tural factors of chromophore molecules: size (which is
reflected in our equation by VRD1), shape (accounted
by VRD1 and X5sol), resonances (by EEig06r), and
transfers of intramolecular charge (by JGI7 and JGI8).
The R2 of the correlation for Yd values was 0.9642 and
the MRE for the prediction of Td was 4.46%. The
model presented here relies solely on descriptors de-
rived from the chemical structure of the molecule and
thus it is applicable to regular NLO chromophores of
any chemical structure. Therefore, this QSPR model
should be useful in the development of new NLO
chromophores.
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